

Nick Roussopoulos

ACT Inc.

Features

- Complete OLAP engine
 - Computes, indexes, and stores highly compressed data cubes
 - Queries, Incremental Updates
- Overcomes the "dimensionality-curse"
 - Independent of the number of dimensions and hierarchical levels within
 - Scalable

Revolutionary Technology

- Highly compressed storage
 - Full Cubes: ALL views answerable
 - 100% Precision answers on all views including the fact table
 - Stores a subset of the views in very tight space
- Tremendous savings
 - Storage
 - Construction time
- Efficient Query Retrieval
 - Sub-second response

APB-1 Benchmark

Density 1 (1.3M)

Dwarf (Thinkpad):

18 s

57 MB

Density 5 (65M)

 Oracle's best benchmark (4 CPU, RAID) 4.5 hrs,

30.0+ GB

Dwarf

65 min

2.4 GB

(Single CPU Pentium 4)

• Density 40 (496M))

Dwarf:

10.3 hrs

8.2 GB

(Single CPU Pentium 4)

NOTE: fact table is 32GB in ASCII, 11.8GB in Binary

Real Data

Real data set (13,449,327):

• Dimensions: 8

• Views: 11,200 (6+1)(4+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)

• Creation time: 100 min

• Size: 6.7 GB

• 1000 Queries*: 15.8 sec

Dimension	Level Cardinalities		
A	$\boxed{7458 \rightarrow 2265 \rightarrow 737 \rightarrow 188 \rightarrow 32 \rightarrow 11}$		
В	$2765 \rightarrow 91 \rightarrow 31 \rightarrow 8$		
C	$3857 \rightarrow 841 \rightarrow 111 \rightarrow 16$		
D	$213 \rightarrow 68 \rightarrow 8$		
Е	3247		
F	660		
G	4		
Н	4		

Table 4: Real Dataset Hierarchies

Challenge by XYZ

- 48 hrs for a "wizard" to decide what to materialize
- Several more hrs to create and index summary tables
- Huge storage

^{*} Each query asks for 10 different values for 3 randomly selected dimensions (e.g. v1/v2/.../v10) and "all" for a 4th dimension- 10*10*10 point query

Dream DataCube

Fact table (5,000,000):

• Dimensions: 10 (3x9L, 4x4L, 3x2L)

• Views: 16,875,000

• Creation: 123 min

• Size: 6.3 GB

• 1000 Queries*: 325 sec

- Challenge by XYZ
 - This cube can never be built!

Never done before

Dwarf Demo

What Makes Dwarf Tick

- Two breakthrough discoveries
 - Suffix redundancy
 - Fusion of prefix and suffix redundancy

Identifies and factors out these redundancies <u>before</u> computing any aggregates for them

Dwarf Technology

Complete solution

- Extends to high dimensionality
- Deep hierarchies
- Queries the full cube- any dimension & level
- Incremental updates
- Indexing is inherent all in one structure
- Dwarf holds in the fact table too!

No gotchas

- No expensive preprocessing (just a single sort)
- No TEMP space required for construction
- No hidden post-construction costs
- No information loss (100% precision)

Dwarf Software

- Lean optimized code
- Tools for discovery
 - Data correlation
 - Optimizing dwarfs
- A dozen of tuning knobs including
 - Gmin
 - The Knob

Data Driven Tuning

Gmin

G_{min}	Space(MB)	Construction(sec)	Queries(sec)
0	490	202	154
100	400	74	110
1000	312	59	317
5000	166	29	408
20,000	151	25	476

"The Knob"

			Workloads			
Knob	Computation	Storage	A	В		
0	4860s	6.6GB	282s	340s		
100	3388s	3.1GB	209s	249s		
500	2038s	2.1GB	198s	238s		
1,000	1794s	1.5GB	186s	222s		
10,000	768s	806MB	191s	229s		
Base Dwarf						
N/A	552s	764MB	1331s	1706s		

Table 9: Knob Evaluation with 13,5 million tuples

Target Markets: High-Dimensional Data

- Business Intelligence
- Security
- Telecom
- Scientific and sensor data
- Weather data
- Bioinformatics
- Web data (click statistics)

Dwarf's Value

- Puts any OLAP engine on "steroids" and Delivers substantial performance improvement
- Dwarf is a fast and effective substitute of indexing for ROLAP products (supports SQL API)

Summary of Dwarf

- Practical all in one structure
- Remarkable Full Cube Size Reduction
- Unprecedented performance (construction and query retrieval)
- Scalable (number of dimensions, hierarchy depth, data size)

Dwarf Technology

- Math behind the scene
 - Exploit data dependencies & correlations
 - Probabilistic counting
- Dimension scalability
 - Savings/performance increases exponentially with sparseness (and dimensions)
 - Independence of # of dimensions

Product Status

- US Patent 7,133,876
- Metadata management
 - Mapping between external values and internal binaries
 - Can deal with partial cubes
- Implementation
 - Cross platform (Unix, MS)
 - Connects with all RDBMs
 - Dwarf Browser

ACT's Experience

- UMD Group established materialized views and incremental access methods (over 50 publications since 1982)
- Data warehouse Cubetree Storage Organization started in 1997 (over 12 publications, ACM Best paper Award)
- Dwarf in 2001-2006