Dwarf:

A High Performance OLAP Engine

Nick Roussopoulos ACT Inc.

Features

- Complete OLAP engine
- Computes, indexes, and stores highly compressed data cubes
- Queries, Incremental Updates
- Overcomes the "dimensionality-curse"
- Independent of the number of dimensions and hierarchical levels within
- Scalable

Revolutionary Technology

- Highly compressed storage
- Full Cubes: ALL views answerable
- 100\% Precision answers on all views including the fact table
- Stores a subset of the views in very tight space
- Tremendous savings
- Storage
- Construction time
- Efficient Query Retrieval
- Sub-second response

APB-1 Benchmark

- Density 1 (1.3M)
- Dwarf (Thinkpad):

18 s
57 MB

- Density 5 (65M)
- Oracle's best benchmark $4.5 \mathrm{hrs}, \quad 30.0+\mathrm{GB}$ (4 CPU, RAID)
- Dwarf
(Single CPU Pentium 4)
- Density 40 (496M))
- Dwarf:
(Single CPU Pentium 4)
10.3 hrs
8.2 GB

NOTE: fact table is 32GB in ASCII, 11.8GB in Binary

Real Data

ACillics

- Real data set $(13,449,327)$:
- Dimensions:
- Views: 11,200 $(6+1)(4+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)$
- Creation time: 100 min
- Size: $\quad 6.7 \mathrm{~GB}$
- 1000 Queries*: 15.8 sec

Table 4: Real Dataset Hierarchies

- Challenge by XYZ
- 48 hrs for a "wizard" to decide what to materialize
- Several more hrs to create and index summary tables
- Huge storage
* Each query asks for 10 different values for 3 randomly selected dimensions (e.g. v1 | v2 |... | v10) and "all" for a $4^{\text {th }}$ dimension- $10 * 10 * 10$ point query

Dream DataCube

- Fact table (5,000,000):
- Dimensions:
$10 \quad(3 \times 9 L, 4 \times 4 L, 3 \times 2 L)$
$16,875,000$
123 min
6.3 GB
325 sec
- Challenge by XYZ
- This cube can never be built!

Dwarf Demo

ator lices
 What Makes Dwarf Tick

- Two breakthrough discoveries
- Suffix redundancy
- Fusion of prefix and suffix redundancy

Prefix-Suffix Savings

- Identifies and factors out these redundancies before computing any aggregates for them

Dwarf Technology

- Complete solution
- Extends to high dimensionality
- Deep hierarchies
- Queries the full cube- any dimension \& level
- Incremental updates
- Indexing is inherent - all in one structure
- Dwarf holds in the fact table too!
- No gotchas
- No expensive preprocessing (just a single sort)
- No TEMP space required for construction
- No hidden post-construction costs
- No information loss (100\% precision)

Dwarf Software

- Lean optimized code
- Tools for discovery
- Data correlation
- Optimizing dwarfs
- A dozen of tuning knobs including
- Gmin
- The Knob

Data Driven Tuning

- Gmin

$G_{\text {min }}$	Space(MB)	Construction(sec)	Queries(sec)
0	490	202	154
100	400	74	110
1000	312	59	317
5000	166	29	408
20,000	151	25	476

- "The Knob"

			Workloads	
Knob	Computation	Storage	A	B
0	4860 s	6.6 GB	282 s	340 s
100	3388 s	3.1 GB	209 s	249 s
500	2038 s	2.1 GB	198 s	238 s
1,000	1794 s	1.5 GB	186 s	222 s
10,000	768 s	806 MB	191 s	229 s
Base Dwarf				
N/A	552 s	764 MB	1331 s	1706 s

Table 9: Knob Evaluation with $\mathbf{1 3 , 5}$ million tuples

- Business Intelligence
- Security
- Telecom
- Scientific and sensor data
- Weather data
- Bioinformatics
- Web data (click statistics)

Dwarf's Value

- Puts any OLAP engine on "steroids" and Delivers substantial performance improvement
- Dwarf is a fast and effective substitute of indexing for ROLAP products (supports SQL API)

Summary of Dwarf

- Practical all in one structure
- Remarkable Full Cube Size Reduction
- Unprecedented performance
(construction and query retrieval)
eScalable
(number of dimensions, hierarchy depth, data size)

Dwarf Technology

- Math behind the scene
- Exploit data dependencies \& correlations
- Probabilistic counting
- Dimension scalability
- Savings/performance increases exponentially with sparseness (and dimensions)
- Independence of \# of dimensions

Product Status

- US Patent 7,133,876
- Metadata management
- Mapping between external values and internal binaries
- Can deal with partial cubes
- Implementation
- Cross platform (Unix, MS)
- Connects with all RDBMs
- Dwarf Browser

ACT's Experience

- UMD Group established materialized views and incremental access methods (over 50 publications since 1982)
- Data warehouse Cubetree Storage Organization started in 1997 (over 12 publications, ACM Best paper Award)
- Dwarf in 2001-2006

